Photo Modules for PCM Remote Control Systems

Available types for different carrier frequencies

<table>
<thead>
<tr>
<th>Type</th>
<th>fo</th>
<th>Type</th>
<th>fo</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSOP1830</td>
<td>30 kHz</td>
<td>TSOP1833</td>
<td>33 kHz</td>
</tr>
<tr>
<td>TSOP1836</td>
<td>36 kHz</td>
<td>TSOP1837</td>
<td>36.7 kHz</td>
</tr>
<tr>
<td>TSOP1838</td>
<td>38 kHz</td>
<td>TSOP1840</td>
<td>40 kHz</td>
</tr>
<tr>
<td>TSOP1856</td>
<td>56 kHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

The TSOP18.. – series are miniaturized receivers for infrared remote control systems. PIN diode and preamplifier are assembled on lead frame, the epoxy package is designed as IR filter. The demodulated output signal can directly be decoded by a microprocessor. The main benefit is the reliable function even in disturbed ambient and the protection against uncontrolled output pulses.

Features

- Photo detector and preamplifier in one package
- Internal filter for PCM frequency
- TTL and CMOS compatibility
- Output active low
- Improved shielding against electrical field disturbance
- Suitable burst length ≥6 cycles/burst

Special Features

- Small size package
- Enhanced immunity against all kinds of disturbance light
- No occurrence of disturbance pulses at the output
- Short settling time after power on (<200µs)

Block Diagram

![Block Diagram Image]
Absolute Maximum Ratings

\(T_{\text{amb}} = 25^\circ \text{C} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>(Pin 3)</td>
<td>(V_S)</td>
<td>(-0.3...6.0)</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>(Pin 3)</td>
<td>(I_S)</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(Pin 1)</td>
<td>(V_O)</td>
<td>(-0.3...6.0)</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>(Pin 1)</td>
<td>(I_O)</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td></td>
<td>(T_j)</td>
<td>100</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td>(T_{\text{stg}})</td>
<td>(-25...+85)</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
<td>(T_{\text{amb}})</td>
<td>(-25...+85)</td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>((T_{\text{amb}} \leq 85^\circ \text{C}))</td>
<td>(P_{\text{tot}})</td>
<td>50</td>
<td>mW</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>(t \leq 10 \text{ s, 1 mm from case})</td>
<td>(T_{\text{sd}})</td>
<td>260</td>
<td>(^\circ\text{C})</td>
</tr>
</tbody>
</table>

Basic Characteristics

\(T_{\text{amb}} = 25^\circ \text{C} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current (Pin 3)</td>
<td>(V_S = 5 \text{ V, } E_v = 0)</td>
<td>(I_{SD})</td>
<td>0.9</td>
<td>1.2</td>
<td>1.5</td>
<td>mA</td>
</tr>
<tr>
<td>Supply Voltage (Pin 3)</td>
<td>(V_S = 5 \text{ V, } E_v = 40 \text{ klx, sunlight})</td>
<td>(I_{SH})</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Distance</td>
<td>(E_v = 0, \text{ test signal see fig.6, IR diode TSAL62000, } I_C = 300 \text{ mA})</td>
<td>(d)</td>
<td>4.5</td>
<td>5.5</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Output Voltage Low (Pin 1)</td>
<td>(I_{OSL} = 0.5 \text{ mA, } E_e = 0.7 \text{ mW/m}^2, \text{ f = } f_0)</td>
<td>(V_{OSL})</td>
<td></td>
<td></td>
<td>250</td>
<td>mV</td>
</tr>
<tr>
<td>Irradiance (30 – 40 kHz)</td>
<td>Pulse width tolerance: (t_{pi} - 4/f_0 < t_{po} < t_{pi} + 6/f_0, \text{ test signal see fig.6})</td>
<td>(E_e_{\text{min}})</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
<td>mW/m(^2)</td>
</tr>
<tr>
<td>Irradiance (56 kHz)</td>
<td></td>
<td>(E_e_{\text{max}})</td>
<td>0.4</td>
<td>0.7</td>
<td></td>
<td>mW/m(^2)</td>
</tr>
<tr>
<td>Directivity</td>
<td>Angle of half transmission distance (\phi_{1/2})</td>
<td>(\phi_{1/2})</td>
<td>(\pm 45)</td>
<td></td>
<td>deg</td>
<td></td>
</tr>
</tbody>
</table>

Application Circuit

![Application Circuit Diagram](image)

*) recommended to suppress power supply disturbances
Suitable Data Format

The circuit of the TSOP18.. is designed in such a way that unexpected output pulses due to noise or disturbance signals are avoided. A bandpass filter, an integrator stage and an automatic gain control are used to suppress such disturbances.

The distinguishing mark between data signal (not suppressed) and disturbance signal (suppressed) are carrier frequency, burst length and Signal Gap Time (see diagram below).

The data signal should fulfill the following condition:

- Carrier frequency should be close to center frequency of the bandpass (e.g. 38kHz).
- Burst length should be 6 cycles/burst or longer.
- After each burst a gap time of at least 9 cycles is necessary.
- The data format should not make a continuous signal transmission. There must be a Signal Gap Time (longer than 15ms) at least each 90ms (see Figure A).

Some examples for suitable data format are:

When a disturbance signal is applied to the TSOP18.. it can still receive the data signal. However the sensitivity is reduced to that level that no unexpected pulses will occur.

Some examples for such disturbance signals which are suppressed by the TSOP18.. are:

- DC light (e.g. from tungsten bulb or sunlight),
- Continuous signal at 38kHz or at any other frequency,
- Signals from fluorescent lamps (see Figure B),
- Continuous IR signal (e.g. 1ms burst, 2ms pause).

Figure A: Data Signal (Output of IR Receiver) with a Signal Gap Time of 20ms

Figure B: Disturbance Signal from Fluorescent Lamp with Signal Gap Time of 7ms
Typical Characteristics \((T_{\text{amb}} = 25^\circ\text{C} \) unless otherwise specified)
Figure 7. Irradiance vs. Output Pulse Length

Figure 10. Supply Current vs. Supply Voltage

Figure 8. Supply Current vs. Ambient Temperature

Figure 11. Relative Spectral Sensitivity vs. Wavelength

Figure 9. Sensitivity vs. Ambient Temperature

Figure 12. Directivity
Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

1. Meet all present and future national and international statutory requirements.

2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0) 7131 67 2831, Fax number: 49 (0) 7131 67 2423